**RESULT**

GCF(**64**, **80**) = **16**

**DESCRIPTIONS**

Prime factorization of 64 :

(**64** = **2** × **2** × **2** × **2** × **2** × **2**)

Prime factorization of 80 :

(**80** = **2** × **2** × **2** × **2** × **5**)

- 64 =
×__2__×__2__×__2__× 2 × 2__2__ - 80 =
×__2__×__2__×__2__× 5__2__

The common prime factors of 64 and 80 are **2**, **2**, **2** and **2**. GCF is equal to the multiplication of those prime factors.

GCF(**64**, **80**) = **2** × **2** × **2** × **2** = **16**

The solution and descriptions above are generated by the GCF calculator. You can use the GCF calculator to see the greatest common factors of other numbers.

The greatest common factor (GCF) of two positive whole numbers is the largest number that divides these numbers exactly. GCF can be found by using the prime factorization method. It is equal to the product of all common prime factors in the factorization.

👉 Click here to see the GCF calculation of 64 and 80 using the cake method.

👉 Click here to see the LCM calculation of 64 and 80 using the cake method.

👉 Click here to see the LCM calculation of 64 and 80 using the prime factorization method.